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Research in approximation theory in Russia dates back to P. L. Chebyshev's
memoir ``The� orie des me� canismes connus sous le nom de paralle� logrammes''
(Me� m. Pre� s. Acad. Imp. Sci. Pe� tersb. Divers Savants, 1854, VII, 539�568).
This memoir posed the problem of the best approximation of functions by
polynomials and presented the first results concerning exact expressions for
such approximations.

An interesting article by V. L. Goncharov, ``The theory of best approxi-
mation of functions,'' included in the collection ``Scientific Heritage of
Chebyshev, Mathematics,'' Moscow, 1945, reviews Chebyshev's work and
work of his collaborators in that early period when approximation theory
was being established in Russia.

The present paper provides a brief commentary on the part of
Goncharov's article devoted to the development of Chebyshev's ideas.

Goncharov justly points out that Chebyshev's memoir contains ``a series
of mathematical facts and ... statements of utmost importance, undoubtedly
forming the basis of his theory.'' Indeed, Chebyshev gives exact expressions
for the best approximations to many different functions. The same subject
is treated in a second memoir of Chebyshev, ``Sur les questions de minima
qui se rattachent a� la repre� sentation approximative des fonctions'' (Me� m.
Acad. Imp. Sci. Pe� tersb. (6) Sci. Math. Phys. VII (1859), 199�291).

Let us consider both topics (foundation of the general theory and exact
solutions) through the eyes of contemporary mathematicians.

1. STATEMENT OF PROBLEMS

In the first-mentioned memoir, Chebyshev wrote: ``Soit f (x) une fonction
donne� e, U un polynome du degre� n avec des coefficients arbitraires. Si l'on
choisit ces coefficients de manie� re a� ce que la diffe� rence f (x)&U, depuis
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x=a&h, jusqu'a� x=a+h, reste dans les limites le plus rapproche� es de 0,
la diffe� rence f (x)&u jouira, comme on le sait, de cette proprie� te� : @ Parmi
les valeurs les plus grandes et les plus petites de la diffe� rence f (x)&U entre
les limits x=a&h, x=a+h, on trouve au moins n+2 fois la même valeur
nume� rique �.''

This problem has the following general geometric interpretation. Let X
be a normed linear space, let A be some subset of X (the approximation
set), and let x # X"A be an arbitrary element. The problem of approximating
the fixed element x from the fixed set A requires us to solve the following
extremal problem:

&x&!& � min, ! # A. (P)

The value of this problem is the distance between x and A in the metric
of the space X. A solution of this problem, i.e., an element !� # A such
that d(x, A, X ) :=inf! # A &x&!&=&x&!� &, is called an element of best
approximation.

Some natural questions could be asked about the problem (P):

(1) Does there exist a solution to the problem or not?

(2) What are the conditions satisfied by a solution (necessary, sufficient,
necessary and sufficient)?

(3) Is a solution unique or not?

(4) Is it possible to express a solution in explicit form?

And so on. Chebyshev was mainly interested in the last question, i.e., in
``exact solutions'' (other questions were considered later).

2. CHEBYSHEV'S ALTERNATION THEOREM AND
ITS GENERALIZATIONS

In the quotatron above, Chebyshev discusses necessary conditions on the
solution of the problem of best approximation of a continuous function
x( } ) by algebraic polynomials. Here is how Chebyshev's alternation theorem
usually is formulated these days.

Theorem 1. Let x( } ) be a continuous function on a finite interval
[t0 , t1]. Then:

(1) a polynomial p̂( } ) of best approximation exists;

(2) the polynomial p̂(t)=�n
k=0 ŷk+1 tk is a polynomial of best approx-

imation iff the difference x( } )&p̂( } ) has an (n+2)-alternation (this means
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that there is a monotone sequence of n+2 points at which the difference
x( } )&p̂( } ) takes on its absolutely largest value, with alternating sign);

(3) the polynomial of best approximation is unique.

Goncharov's article is devoted to the history of this theorem. The present
article comments on the modern view of the subject.

(A) Existence of an Element of Best Approximation.

As a rule, existence theorems in approximation theory are corollaries of
the following general principles of functional analysis:

Weierstrass�Lebesgue Compactness Principle. A lower semicontinuous
function on a compact topological space attains its (global) infimum.

Banach�Alaoglu�Bourbaki Theorem. The polar of a neighborhood is a
weakly compact set (in every topology generated by duality).

As a corollary of these principles, the existence of elements of best
approximation in any finite-dimensional subspace of a Banach space (in
particular, in Chebyshev's case), in any closed subset of a reflexive Banach
space, and in many other different cases, can be obtained. Existence of best
=-nets, of extremal subspaces in conjugate spaces, and so on, are also
corollaries of the compactness principles quoted above.

(B) Duality and Criteria

Let us suppose that the approximation set A is convex. Then the problem
(P) is a problem of convex programming. One of the main principles of
convexity is the following: Every convex phenomenon (a convex set, a
convex function, or a convex problem) has a dual description in the dual
space. An application of this principle to the problem (P) leads to the
following result:

Theorem 2. Let X be a normed space and A a convex set. Then

d(x, A, X)=sup
x*

((x*, x) &sA(x*) : &x*&�1),

where (x*, x) is the value of the linear functional x* at the element x, and

sA(x*) :=sup
x # A

(x*, x)

is the value at x* of the support function of the set A.

Many duality theorems in approximation theory were obtained by
S. M. Nikolskii, M. G. Krein, S. Ya. Khavinson, A. L. Garkavi and other
mathematicians.
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We now formulate a general criterion for an element to be a best
approximation from a convex set.

Theorem 3. If A is a convex set, then !� is a solution of problem (P) iff
there exists a linear functional x* such that

&x*&X*=1, (x*, x&!� )=&x&!� &, (x*, !� )=sA(!� ).

Both results are proved by standard methods of convex analysis.
In preparation for the short survey of the approximation theory in C-spaces

offered at the end of this section, we now recall that Chebyshev's problem
is a particular case of the more general problem of convex programming:

Let T be a compact set and f : T_Rn � Rn a function of variables t # T
and y # Rn. Suppose that the function f (t, } ) is convex for all t # T. Consider
the problem

sup
t # T

f (t, y) � min. (P$)

Now we formulate an important theorem of convex analysis which gives a
universal approach to criteria for elements of best approximation in C-spaces.

Theorem 4 (Decomposition (or Refinement) Theorem). Let T be a
compact topological space, f : T_Rn � R (or, equivalently, ( ft( } ): t # T ) a
family of real functions) such that:

(a) f (t, } ) is convex for all t # T;

(b) f ( } , y) is upper semicontinuous for all y # Rn ;

(c) m :=infy maxt f (t, y)>&�.

Then there exist r�n+1 points [{i] r
i=1 such that

m=inf
y

max
1�i�r

f ({i , y).

This theorem allows one to state a criterion for the solution of the
problem

max
t

f (t, y) � min, (P")

with f as described in the theorem. For its formulation and derivation, we
need the following important definition and two theorems from convex
analysis.
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Definition. Let g: Rn � R _ [+�] be a convex function. The set

�g( ŷ) :=[z # Rn : g( y)& g( ŷ)�(z, y&ŷ)] (1)

(with (a, b) :=�n
i=1 aibi) is called the subdifferential of g at the point ŷ.

Dubovitskii�Miliutin Formula. If f is the pointwise maximum of the two
continuous convex functions f1 and f2 , i.e., f ( y) :=max( f1( y), f2( y)), and
f1( ŷ)= f2( ŷ), then

�f ( ŷ)=co(�f1( ŷ) _ �f2( ŷ)) (2)

(co A means the convex hull of A).

Fermat's Theorem for Convex Functions. Let f be a convex function.
Then ŷ is a minimum of f iff

0 # �f (ŷ). (3)

From the decomposition theorem and these results from convex analysis,
one concludes the following.

Theorem 5. If ŷ is a solution of the problem (P"), then there exist
r�n+1 points, [{i] r

i=1 , in T and positive scalars, (:i)
r
i=1 , with � r

i=1 : i=1
such that

(a) f ({i , ŷ)=m (:=infy maxt f (t, y));

(b) 0 # � r
i=1 : i �f{i

( ŷ).

Chebyshev's criterion, i.e., Theorem 1, is an immediate corollary. In
Chebyshev's case, f (t, y) :=|x(t)&�n

k=0 yk+1 tk |, T=[t0 , t1]. It follows
from Theorem 5 that there exist r�n+2 points [{i] r

i=1 in T and positive
scalars [:i]r

i=1 with �r
i=1 :i=1 such that

}x({ i)& :
n

k=0

ŷk+1 tk }=m :=&x( } )&p̂( } )&C([t0 , t1 ]) (4)

and

:
r

i=1

:i sgn(x({i)&p̂({i)) {k
i =0, k=0, 1, ..., n. (5)

It follows that the homogeneous linear system in (5) of n+1 equations in
the r�n+2 unknowns zi :=:i sgn(x({i)&p̂({i))) has a nontrivial solution.
Hence (as follows from properties of Vandermonde's matrix), r=n+2, and
zi zi+1<0, 0�i�n+1. Chebyshev's criterion is proved.
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In a similar way, one can prove the criteria of Bernstein, Kolmogorov,
Zukhovitsky and Krein, Zukhovitsky and Stechkin, Singer, and many
others.

The majority of such results are immediate corollaries of the following
reformulation of the decomposition theorem (it includes also some results
devoted to the problem of approximation of single elements in the case of
a metric which is ``nonsymmetric'').

Let T be a topological space, Y a real or complex locally convex linear
topological space, Ln an n-dimensional subspace of the space C(T, Y ) of
continuous mappings from T into Y, x( } ) # C(T, Y)"Ln , [ pt( } )]t # T a family
of sublinear continuous functionals on Y (which may be nonsymmetric).

In this setting, consider the following extremal problem:

sup
t # T

pt(x( } )&!( } )) � min, !( } ) # Ln . (P$$$)

Theorem 6. If, in (P$), the mapping t [ pt( y) is upper semicontinuous
for each y # Y, then !� ( } ) is a solution of (P$) iff there exist r points [tj] r

j=1

in T (with r�n+1 in the real and r�2n+1 in the complex case), and r
functionals [ yj*] r

i=1 in Y*, and r positive numbers [:j] r
j=1 with �r

j=1 :j=1,
such that

(a) Re ( yj*, y) �ptj
( y), for all y # Y;

(b) ptj
(x(t j)&!� (tj))=supt # T pt(x( } )&!� ( } )), for all j;

(c) �r
j=1 : j Re ( y j* , y(tj))=0, for all y( } ) # Ln

(with Re of course ignorable in the real case).

3. EXACT EXPRESSION FOR THE ELEMENTS OF BEST
APPROXIMATION OF INDIVIDUAL FUNCTIONS

Chebyshev and Zolotarev found explicit expressions for polynomials and
rational functions of best approximation to some important functions x( } ).
Here are three examples.

Theorem 7. (a) For x( } )=tn, d(x( } ), Pn&1 , C([&1, 1]))=2&(n&1),
and

x(t)&p̂(t)=Tn(t) :=2&(n&1) cos n arc cos t

(Chebyshev; the polynomials Tn( } ) are called Chebyshev polynomials).
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(b) For x(t)=1�(t&a) with |a|>1, d(x( } ), Pn , C([&1, 1]))=M :=
(a&- a2&1)�(a2&1), and

1
t&a

&p̂(t)=
M
2 \ :&w

1&:w
wn+

1&:w
:&w

w&n+ ,

t=
1
2

(w+w&1).

(c) For x(t)=tn+_tn&1, d(x( } ), Pn&2 , C([&1, 1]))=&Zn_( } )&,
where Zn_ is a Zolotarev polynomial and has the parametric representation

Zn_(t)=C \\H(K�n&w)
H(K�n+w)+

n

+\H(K�n+w)
H(K�n&w)+

n

+ ,

t=
sn2 w+sn2 K�n
sn2 w&sn2 K�n

with H( } ), sn( } ) elliptic functions, and C a known constant.

In view of these results, one is tempted to recall the words of Jacques
Hadamard: ``The shortest path between two truths in real analysis lies in
the complex domain.''

In all the cases discussed (and indeed in almost all cases considered at
that first stage of the development of approximation theory), the difference
e( } ) :=x( } )&p̂( } ) between the approximated function x( } ) and the polyno-
mial p̂( } ) of best approximation is represented in the parametric form
e= f (w), t= g(w), such that e( } ) has the necessary alternation on [&1, 1].

This idea is nicely illustrated by the first two examples of the theorem.
In case (a) the representation in question is

e= 1
2 (wn+w&n), t= 1

2 (w+w&1).

It is easy to see that the function t [ e(t) on the complex domain has no
singularities except at t=�, where it has a pole of degree n with the
residue equal to 1. Hence e( } ) # Pn and e(t)=tn+ } } } . If w=exp(i%),
0�%�?, then t runs from 1 to &1 and e( } ) has an (n+1)-alternation.
From the Chebyshev criterion (Theorem 1), we obtain (a).

In (b), e( } ) has two singularities, at t=a and t=�. In both cases, the
singularities are poles (of degree one with the residue equal to 1 at the
point t=a, and of degree n at t=�). Therefore, e(t)=1�(t&a)+p̂(t). And
again (from the theorem of the argument), e( } ) has an (n+2)-alternation,
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therefore, by Chebyshev's criterion, it follows that p̂( } ) is the polynomial of
best approximation to the function t [ 1�(t&a).

The representation in (c) is also completely natural. The details can be
found in Akhiezer's book.

The remainder of the article by Goncharov is devoted to the development
of approximation theory in the 20th century.

On the problems considered above (and the problems of unicity) see also
[1, 2].
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